5.4 Indefinite Integrals and the Net Change Theorem

In this section we will focus on how to evaluate and understand the indefinite integral. The notation $\int f(x) d x$ is used for an antiderivative of f and is called the indefinite integral.

$$
\int f(x) d x=F(x) \text { means } F^{\prime}(x)=f(x)
$$

We understand this to be true by using the relationship between antiderivatives and integrals given by the Fundamental Theorem of Calculus.

NOTE: It is very important that you distinguish the differences between the definite and indefinite integral. A definite integral, $\int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}$, is a number, whereas an indefinite integral, $\int \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}$, is a function (or family of functions).

Below we have a table of derivatives and their inverse antiderivatives. These are also found in the back reference pages of your Calculus text.

Integration Rules:

1. $\int f(x) d x=F(x)+C \Leftrightarrow F^{\prime}(x)=f(x)$
2. $\int a f(x) d x=a \int f(x) d x$
3. $\int-f(x) d x=-\int f(x) d x$
4. $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$

Differentiation Formulas:
9. $\frac{d}{d x}(\csc x)=-\csc x(\cot x)$

1. $\frac{d}{d x}(x)=1$
2. $\frac{d}{d x}(a x)=a$
3. $\frac{d}{d x}(\ln x)=\frac{1}{x}$
4. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
5. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
6. $\frac{d}{d x}(\cos x)=-\sin x$
7. $\frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x}$
8. $\frac{d}{d x}(\sin x)=\cos x$
9. $\frac{d}{d x}(\tan x)=\sec ^{2} x$
10. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
11. $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
12. $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
13. $\frac{d}{d x}(\sec x)=\sec x \tan x$
14. $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$

Integration Formulas:

1. $\int 1 d x=x+C$
2. $\int a d x=a x+C$
3. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
4. $\int \sin x d x=-\cos x+C$
5. $\int \cos x d x=\sin x+C$
6. $\int \sec ^{2} x d x=\tan x+C$
7. $\int \csc ^{2} x d x=-\cot x+C$
8. $\int \sec x(\tan x) d x=\sec x+C$
9. $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+C$
10. $\int \csc x(\cot x) d x=-\csc x+C$
11. $\int \frac{1}{a^{2}+x^{2}} d x=-\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
12. $\int \frac{1}{x} d x=\ln |x|+C$
13. $\int e^{x} d x=e^{x}+C$
14. $\int a^{x} d x=\frac{a^{x}}{\ln a}+C a>0, a \neq 1$
15. $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C$
16. $\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left|\frac{x}{\frac{x}{a}}\right|+C$ or $-\cos ^{-1}\left|\frac{a}{a}\right|+C$
17. $\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin (2 x)}{4}+C$. Note: $\sin ^{2} x=\frac{1-\cos 2 x}{2}$
18. $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C$
19. $\int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\sec ^{-1} x+C$

You must know the derivative rules in order to remember the antiderivative/integration rules.

Recall that the most general antiderivative on a general interval is obtained by adding a constant to a antiderivative. We adopt the convention that when a formula for a general indefinite integral is given, it is valid only on an interval.

For example, $\int \frac{1}{x^{2}} d x=-\frac{1}{x}+c$ is written with the understanding that it is valid on the interval $(-\infty, 0) \cup(0, \infty)$. (Notice - this is the domain of the antiderivative.)

Example: Find $\int\left(\cos x+\frac{1}{2} x\right) d x$
$\int\left(\cos x+\frac{1}{2} x\right) d x=\int \cos x d x+\int \frac{1}{2} x d x=\int \cos x d x+\frac{1}{2} \int x d x=\sin x+\frac{1}{2}\left(\frac{x^{2}}{2}\right)+c=\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})+\frac{x^{2}}{4}+\boldsymbol{c}$
You can check your solution by differentiating it to see if you get the function in the integral.

Example: Find $\int x(\sqrt[3]{x}+\sqrt[4]{x}) d x \quad$ First rewrite $\sqrt[3]{x}$ and $\sqrt[4]{x}$ as powers - then multiply.

$$
\begin{gathered}
\int x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right) d x=\int\left(x \cdot x^{\frac{1}{3}}+x \cdot x^{\frac{1}{4}}\right) d x=\int\left(x^{\frac{4}{3}}+x^{\frac{5}{4}}\right) d x \\
\frac{x^{\frac{7}{3}}}{\frac{7}{3}}+\frac{x^{\frac{9}{4}}}{\frac{9}{4}}+C=\frac{3 x^{\frac{7}{3}}}{7}+\frac{4 x^{\frac{9}{4}}}{9}+\boldsymbol{C}=\frac{3}{7} \sqrt[3]{x^{7}}+\frac{4}{9} \sqrt[4]{x^{9}}+\boldsymbol{C}=\frac{\mathbf{3}}{7} x^{2} \sqrt{x}+\frac{\mathbf{4}}{9} x^{2} \sqrt{x}+\boldsymbol{C}
\end{gathered}
$$

(Any of the underlined, bold solutions are acceptable.)

APPLICATIONS:

Part 2 of the FTC says that if \boldsymbol{f} is continuous and $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f. This means that $\mathrm{F}^{\prime}=f$, so the equation can be rewritten as

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

We know that $F^{\prime}(x)$ represents the rate of change of $y=F(x)$ with respect to x and $F(b)-F(a)$ is the change in \boldsymbol{y} when \boldsymbol{x} changes from a to b .

Net Change Theroem: The integral of a rate of change is the net change.

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

This principle can be applied to all of the rates of change in the natural and social sciences. Here are a few instances of this idea:

- If $V(t)$ is the velocity of water in a reservoir at time t, then its derivative $V^{\prime}(t)$ is the rate at which water flows into a reservoir at time t. So

$$
\int_{t_{1}}^{t_{2}} \boldsymbol{V}^{\prime}(\boldsymbol{t}) d \boldsymbol{t}=\boldsymbol{V}\left(\boldsymbol{t}_{2}\right)-\boldsymbol{V}\left(\boldsymbol{t}_{\mathbf{1}}\right)
$$

is the change in the amount of water in the reservoir between time t_{1} and time t_{2}.

- If the mass of a rod measured form the left end to a point \boldsymbol{x} is $m(x)$, then the linear density is $p(x)=m^{\prime}(x)$. So

$$
\int_{a}^{b} p(x) d x=m(b)-m(a)
$$

is the mass of the segent of the rod that lies between $x=a$ to $x=b$.

- The acceleration of an object is $a(t)=v^{\prime}(t)$, so

$$
\int_{t_{1}}^{t_{2}} a(t) d t=v\left(t_{2}\right)+v\left(\boldsymbol{t}_{1}\right)
$$

is the change in velocity from time \boldsymbol{t}_{1} to time \boldsymbol{t}_{2}.
There are other applications in the Calculus text.
Example: The velocity of a jogger (mph) is $v(t)=2 t^{2}-8 t+6$, for $0 \leq t \leq 3$ where t is measured in hours.
a) Find the displacement (in miles) over the interval $[0,1]$.

Use the fact that if the position function is $s(t)$, then its velocity is $V(t)=s^{\prime}(t)$, so

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} V(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right) \quad o r \\
s(1)-s(0)=\int_{0}^{1}\left(2 t^{2}-8 t+6\right) d t \\
\left.=\frac{2 t^{3}}{3}-\frac{8 t^{2}}{2}+6 t\right]_{0}^{1} \\
=\left(\frac{2(1)^{3}}{3}-\frac{8(1)^{2}}{2}+6(1)\right)-\left(\frac{2(0)^{3}}{3}-\frac{8(0)^{2}}{2}+6(0)\right) \\
=\frac{2}{3}-4+6=\frac{2-12+18}{3}=\frac{8}{3}
\end{gathered}
$$

