5.4 Indefinite Integrals and the Net Change Theorem

In this section we will focus on how to evaluate and understand the indefinite integral. The notation $\int f(x) dx$ is used for an antiderivative of **f** and is called the indefinite integral.

$$f(x)dx = F(x)$$
 means $F'(x) = f(x)$

We understand this to be true by using the relationship between antiderivatives and integrals given by the Fundamental Theorem of Calculus.

NOTE: It is very important that you distinguish the differences between the **definite** and **indefinite** integral. A definite integral, $\int_a^b f(x) dx$, is a number, whereas an indefinite integral, $\int f(x) dx$, is a function (or family of functions).

Below we have a table of derivatives and their inverse antiderivatives. These are also found in the back reference pages of your Calculus text.

You must know the derivative rules in order to remember the antiderivative/integration rules.

Recall that the most general antiderivative on a general interval is obtained by adding a constant to a antiderivative. We adopt the convention that when a formula for a general indefinite integral is given, it is valid only on an interval.

For example, $\int \frac{1}{x^2} dx = -\frac{1}{x} + c$ is written with the understanding that it is valid on the interval $(-\infty, 0) \cup (0, \infty)$. (Notice – this is the domain of the antiderivative.)

Example: Find
$$\int \left(\cos x + \frac{1}{2}x\right) dx$$

 $\int \left(\cos x + \frac{1}{2}x\right) dx = \int \cos x \, dx + \int \frac{1}{2}x \, dx = \int \cos x \, dx + \frac{1}{2} \int x \, dx = \sin x + \frac{1}{2} \left(\frac{x^2}{2}\right) + c = \sin(x) + \frac{x^2}{4} + c$

You can check your solution by differentiating it to see if you get the function in the integral.

Example: Find
$$\int x(\sqrt[3]{x} + \sqrt[4]{x})dx$$
 First rewrite $\sqrt[3]{x}$ and $\sqrt[4]{x}$ as powers – then multiply.

$$\int x(x^{\frac{1}{3}} + x^{\frac{1}{4}})dx = \int \left(x \cdot x^{\frac{1}{3}} + x \cdot x^{\frac{1}{4}}\right)dx = \int \left(x^{\frac{4}{3}} + x^{\frac{5}{4}}\right)dx$$

$$\frac{x^{\frac{7}{3}}}{\frac{7}{3}} + \frac{x^{\frac{9}{4}}}{\frac{9}{4}} + C = \frac{3x^{\frac{7}{3}}}{7} + \frac{4x^{\frac{9}{4}}}{9} + C = \frac{3}{7}\sqrt[3]{x^7} + \frac{4}{9}\sqrt[4]{x^9} + C = \frac{3}{7}x^2\sqrt{x} + \frac{4}{9}x^2\sqrt{x} + C$$

(Any of the underlined, bold solutions are acceptable.)

APPLICATIONS:

Part 2 of the FTC says that if **f** is continuous and [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where **F** is any antiderivative of f. This means that **F** ' = f, so the equation can be rewritten as

$$\int_{a}^{b} F'(x) dx = F(b) - F(a).$$

We know that F'(x) represents the rate of change of y = F(x) with respect to x and F(b) - F(a) is the change in y when x changes from a to b.

Net Change Theroem: The integral of a rate of change is the *net change*.

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

This principle can be applied to all of the rates of change in the natural and social sciences. Here are a few instances of this idea:

• If *V(t)* is the velocity of water in a reservoir at time *t*, then its derivative *V'(t)* is the rate at which water flows into a reservoir at time *t*. So

$$\int_{t_1}^{t_2} V'(t)dt = V(t_2) - V(t_1)$$

is the change in the amount of water in the reservoir between time t_1 and time t_2 .

• If the mass of a rod measured form the left end to a point x is m(x), then the linear density is p(x) = m'(x). So

$$\int_{a}^{b} p(x)dx = m(b) - m(a).$$

is the mass of the segent of the rod that lies between x = a to x = b.

• The acceleration of an object is a(t) = v'(t), so $\int_{t_1}^{t_2} a(t)dt = v(t_2) + v(t_1)$

is the change in velocity from time t_1 to time t_2 .

There are other applications in the Calculus text.

Example: The velocity of a jogger (mph) is $v(t) = 2t^2 - 8t + 6$, for $0 \le t \le 3$ where *t* is measured in hours.

a) Find the displacement (in miles) over the interval [0, 1].

Use the fact that if the position function is s(t), then its velocity is V(t) = s'(t), so

$$\int_{t_1}^{t_2} V(t)dt = s(t_2) - s(t_1) \quad or$$

$$s(1) - s(0) = \int_{0}^{1} (2t^2 - 8t + 6)dt$$

$$= \frac{2t^3}{3} - \frac{8t^2}{2} + 6t \Big]_{0}^{1}$$

$$= \left(\frac{2(1)^3}{3} - \frac{8(1)^2}{2} + 6(1)\right) - \left(\frac{2(0)^3}{3} - \frac{8(0)^2}{2} + 6(0)\right)$$

$$= \frac{2}{3} - 4 + 6 = \frac{2 - 12 + 18}{3} = \frac{8}{3}$$